Model Severing

Szu-Chi Chung

Department of Applied Mathematics, National Sun Yat-sen University

The Pipeline

2D —>Inroduction Yo Dt Science)

Dt Praprocessing

(e Feature Engenecring)

INSIGHTS ACTIVATION

V

Dats Insights

influence business decisians
{eq. reports,
daghbaardy, alarting)

influgnce congumer decisions
(g Introase Usage,
FELEl ST

Model Serving

—F

A g

Maodal
Deployment
[eug. edge,

WU LFOLarwie)

b

Medel Maritoring

Serve olher
applicationiervices

ORCHESTRATION (sg. datapipelines, ML pipalings, scheduling, CI/CE)

https:/fcloud.google-com/blog/topics/developers-practitionersfintro-data-science-google-cloud

https://cloud.google.com/blog/topics/developers-practitioners/intro-data-science-google-cloud

Ship an inference model

» A data science project doesn’t end when you arrive at a Colab/Kaggle notebook

that can save a trained model
I. First, you may want to export your model to something other than Python:

Your production environment may not support Python at all - for instance, if it’s a mobile app or
an embedded system

If the rest of the app isn’t in Python (it could be in JavaScript, C++, etc.), the use of Python to
serve a model may induce significant overhead

2. Second, since your production model will only be used to output predictions, rather than
for training, you have room to perform various optimizations that can make the model

faster and reduce 1ts memory footprint
3. Finally, you should monitor the health and potential drifts of your system!

How to save a model?

» It’s a good 1dea to include all the preprocessing layers in the final model you
export so that it can ingest data in its natural form when deployed to production

This avoids having to take care of preprocessing separately within the application that uses
the model. It also makes it simpler to update them later on and limits the risk of mismatch
between a model and the preprocessing steps it requires

However, we can skip this step 1f we retrieve our features from the same source location
for both training and serving, ie. from a feature store

» Using save utility that serializes and de-serializes a model

For reproducibility and quality control needs, when different architectures and
environments should be taken into account, exporting the model in Open Neural Network
Exchange format (ONNX) format or even using a container might be good options

https://madewithml.com/courses/mlops/feature-store/
https://onnx.ai/get-started.html

A Typical Example

» Once you have trained a model, you can easily use it in any Python code

» But as your infrastructure grows, there comes a point where it 1s preferable to wrap your
model in a small service whose sole role is to make predictions and have the rest of the
infrastructure query it (e.g., via a REST or gRPC API)

» This decouples your model from the rest of the infrastructure, making it possible to easily
switch model versions or scale the service up as needed (independently from the rest of
your infrastructure), and ensure that all your software components rely on the same model
Versions

— Request

e Response

Client Server Database
- , &
J:l_ — & ~—
&
Model

https://madewithml.com/courses/mlops/cicd/

Deploy the model!

» Back to that you’re starting your own data science consulting shop. You put up
a fancy website, you notify your network. The projects start rolling in:

I. A personalized photo search engine for a picture-sharing social network—type in
“wedding” and retrieve all the pictures you took at weddings

2. Flagging spam and offensive text content among the posts of a chat app

3. Building a music recommendation system for users of an online radio

4. Detecting credit card fraud for an e-commerce
website

5. Predicting display ad click-through rate to decide
which ad to serve to a given user at a given time

6. Flagging anomalous cookies on the conveyor belt
of a cookie-manufacturing line

1. Deploying a model in remote server

» This 1s perhaps the common way to turn a model into a product: install model
environment (Like scikit-learn, XGBoost or Keras) on a server or cloud
instance, and query the model’s predictions viaa REST AP

You could build your own serving app using something like Flask or FastAPI (or any other
Python web development library)

Keras also has its own library for shipping models as APIs, called TensorFlow Serving. For
other models, you can use BentoML

Method: GET
URI: "http://localhost:5000/"

Headers: "accept: application/json"
Body: ||{}||

..................

content types

YAML, XML, JSON, etc.

S .
.................

atus-code": é@@,

https://madewithml.com/courses/mlops/api/
http://www.tensorflow.org/tfx/guide/serving
https://docs.bentoml.org/en/latest/frameworks/index.html

The infrastructure

» An important question when deploying a model as a REST API or webapp 1s
whether you want to host the code on your own, or whether you want to use a
fully managed third-party cloud service

Compute engine: Google Cloud Al Platform lets you simply upload your model to
Google Cloud Storage (GCS), and it gives you an API endpoint to query it. It takes care
of many practical details, such as batching predictions, load balancing, and scaling

Using container orchestration via Kubernetes for managed deployment 1s a good choice.
There are also fully-managed solutions for containers, such as SageMaker, BentoML, etc

We want to be able to encapsulate all the requirements we need so that there are no external
dependencies by using a container

Use serverless options such as AWS Lambda, Google Cloud Functions, etc

https://madewithml.com/courses/mlops/infrastructure/#methods
https://kubernetes.io/
https://aws.amazon.com/lambda/?nc1=h_ls
https://cloud.google.com/functions

1. Deploying a model in remote server

» You should use this deployment setup when

The application that will consume the model’s prediction will have reliable access to the
internet (obviously)

For instance, if your application is a mobile app, serving predictions from a remote API means
that the application won’t be usable in airplane mode or in a low-connectivity environment

The application does not have strict latency requirements: the request, inference, and
answer round trip will typically take around 500 ms

The input data sent for inference 1s not highly sensitive: the data will need to be available
on the server in a decrypted form, since it will need to be seen by the model (but note that
you should use SSL encryption for the HTTP request and answer)

» For instance, the image search engine project, the music recommender system,

and the credit card fraud detection project are all good fits for serving via a
REST API

9

1. Deploying a model in remote server

» The REST API is nice and simple, and it works well when the input and output
data are not too large. Moreover, just about any client application can make
REST queries without additional dependencies

However, it is based on JSON, which is text-based and fairly verbose

It IS lnefﬁCICnt ln terms Of € C ® 127.00.1:8050
serialization/deserialization time and
payload size: many floats end up iris classifier @

being represented using over 15

characters, which translates to over
120 bits for 32-bit floats! This will
result in high latency and bandwidth. ———n
You may try other protocol like gRPC e [
instead

/metrics

A Prediction Service built with BentoML

Contact the developer

infra infrastructure endpoints

~
app Inference endpoints

1 O POST /classify InferenceAPI{NumpyNdarray() — NumpyNdarray(})

2. Deploying a model 1n local computer

» Many models (especially deep learning) are often used in browser-based or
desktop-based JavaScript applications

While it 1s usually possible to have the application query a remote model via a REST API,
there can be key advantages in having the model run directly in the browser
This can be hosted on the server or

On the user’s computer!

MMMMM

11

https://share.streamlit.io/streamlit/demo-self-driving
https://share.streamlit.io/streamlit/demo-self-driving

2. Deploying a model 1n local computer

» You should only go with this option 1f your model is small enough that 1t won’t
hog the CPU, GPU, or RAM of your user’s laptop or smartphone

» Since the entire model will be downloaded to the user’s device, you should make sure that
nothing about the model needs to stay confidential. Be mindful of the fact that, given a
trained model, it is usually possible to recover some information about the training data:
better not to make your trained model public if it was trained on sensitive data

» To deploy a model in JavaScript, the TensorFlow ecosystem includes TensorFlow.js, a
library for deep learning that implements almost all of the Keras API as well as lower-level
TensorFlow APIs. You can easily import a saved Keras model into TensorFlow.js to query
it as part of your browser-based JavaScript app or your desktop Electron app

» If you simply need a web interface, you can use Streamlit or Gradio

http://www.tensorflow.org/js
https://streamlit.io/
https://gradio.app/

Inference model optimization

» Optimizing your model for inference 1s especially important when deploying in
an environment with strict constraints on available power and memory or for
applications with low latency requirements

You should always seek to optimize your model. There are two popular optimization
techniques you can apply:

Weight pruning—Not every coefficient in a weight tensor contributes equally to the predictions.
It’s possible to considerably lower the number of parameters in the layers of your model by only
keeping the most significant ones. This reduces the memory and compute footprint of your model,
at a small cost in performance metrics. By deciding how much pruning you want to apply, you are
in control of the trade-off between size and accuracy

Weight quantization—Deep learning models are trained with single-precision floating-point
(float32). However, it’s possible to quantize weights to 8-bit signed integers (int8) to get an
inference-only model that’s a quarter the size but remains near the accuracy of the original model

13

2. Deploying a model 1n local computer

» Use this setup when

1. You want to offload compute to the end user, which can dramatically reduce server costs

2. You need your app to keep working without connectivity, after the model has been
downloaded and cached
» When your web application is often used in situations where the user’s connectivity is intermittent

or slow (e.g., a website for hikers), so running the model directly on the client side is the only
way to make your website reliable

3. Your application has strict latency constraints. While a model running on the end user’s
laptop or smartphone is likely to be slower than one running on a large GPU on your own
server, you don’t have the extra 500 ms of network round trip

4. The mnput data needs to stay on the end user’s computer or phone. For instance, in spam
detection project, the web version and the desktop version of the chat app (implemented
as a cross-platform app written in Java-Script) should use a locally run model

3. Deploying a model on a device

» Sometimes, you may need your model to live on the same device that runs the
application that uses it - maybe a smartphone, an embedded ARM CPU on a
robot, or a microcontroller on a tiny device

You may have seen a camera capable of automatically detecting people and faces in the
scenes you pointed it at: that was probably a small model running directly on the camera

223 C

“* TensorFlow

15

Deploying a model on a device

» To deploy a Keras model on a smartphone or embedded device, your go-to
solution is TensorFlow Lite

» It’s a framework for efficient on-device deep learning inference that runs on Android and
10S smartphones, as well as ARM64-based computers, Raspberry Pi, or certain
microcontrollers. It includes a converter that can straightforwardly turn your Keras model
into the TensorFlow Lite format

» For other model, you can use Kivy or BeeWare

» For instance

» Spam detection model for chat app will need to run on the end user’s smartphone as part of
the chat app, because messages are end-to-end encrypted and thus cannot be read by a
remotely hosted model. Likewise, the bad-cookie detection model has strict latency
constraints and will need to run at the factory

http://www.tensorflow.org/lite
https://github.com/kivy/kivy
https://beeware.org/

Deploying a model on a device

» You should use this setup when

1. Your model has strict latency constraints or needs to run in a low-connectivity
environment. If you’re building an immersive augmented reality application, querying a
remote server 1s not a viable option

2. Your model can be made sufficiently small that it can run under the memory and power
constraints of the target device. You can use the TensorFlow Model Optimization Toolkit
to help with this

3. Getting the highest possible accuracy 1sn’t mission critical for your task. There 1s always
a trade-off between runtime efficiency and accuracy, so memory and power constraints
often require you to ship a model that 1sn’t quite as good as the best model you could run

4. The nput data is strictly sensitive and thus shouldn’t be decryptable on a remote server

http://www.tensorflow.org/model_optimization

4. Monitor your model in the wild

» You’ve exported an inference model, you’ve integrated it into your application,
and you’ve done a dry run on production data - the model behaved as expected

You’ve written unit tests as well as logging and status-monitoring code. Now it’s time to
press the big red button and deploy to production

Even this 1s not the end! Once you’ve deployed a model, you need to keep monitoring its

behavior, 1ts performance on new data, its interaction with the rest of the application, and
its eventual impact on business metrics

2—31n’fmducﬁon fo [Da{a Science]

E MODELDEVELOPMENT | MLENGINEERING & INSIGHTS ACTIVATION
I Data Ingettion l [Data Exploration I | Feature Engincering]1 Influgnce business decisions
1] I Model Serving PO ot 0
eomremt, e .
- jr - 7m"*“:i Model Infiuence consumer decisions.
e W e 8 T ESORE BT |

ORCHESTRATION (s3 datapipslines, ML pipeines, schaduling, C/CD)

18

Monitor your model in the wild

» For instance

» Is user engagement in your online radio up or down after deploying the new music
recommender system?

» Has the average ad click-through rate increased after switching to the new click-through-
rate prediction model?

» If possible, do a regular manual audit of the model’s predictions on production data. It’s
generally possible to reuse the same infrastructure as for data annotation

» Send some fraction of the production data to be manually annotated, and compare the model’s
predictions to the new annotations. For instance, you should definitely do this for the image
search engine and the bad-cookie flagging system

» When manual audits are impossible, consider alternative evaluation avenues such as user
surveys (for example, in the case of the spam and offensive-content flagging system)

Monitor your model in the wild

» The machine learning model 1s subject to natural performance degradation over
time, as well as unintended behavior, since the data exposed to the model will
be different from what 1t has been trained on

This 1sn't something we should be trying to avoid but rather understand and mitigate as
much as possible

» Testing and monitoring share a lot of similarities, such as ensuring that certain
expectations around data completeness, distributions, schema, etc. are met

However, a key distinction is that monitoring involves comparing live, streaming data
distributions from production to fixed/sliding reference distributions from training data

20

System health

» The first step 1s to ensure that the actual system is up and running as it should

» This can include metrics specific to service requests such as latency, throughput, error rates,
etc. as well as infrastructure utilization such as CPU/GPU utilization, memory, etc

» Fortunately, most cloud providers
and even orchestration layers will
provide this insight into our system's
health for free through a dashboard.
In the event we don't, we can easily
use Grafana, Datadog, etc. to ingest
system performance metrics from
logs to create a customized
dashboard and set alerts

o

‘*’“"‘wm&:m\ »ﬁlwﬁlﬁ

Y

https://grafana.com/
https://www.datadoghq.com/

Performance

» The next layer of metrics to monitor involves the model's performance

» It's usually never enough to just analyze the cumulative performance metrics across the
entire span of time since the model has been deployed

» We should also inspect performance across a period of time that's significant for our
application (ex. daily). These sliding metrics might be more indicative and we might be
able to 1dentify 1ssues faster by not obscuring them with historical data

100.0
97.5
95.0

92.5

90.0

87.5

850 ___ cumulative
g25 T sliding
—=-= thresheld

80.0
0 200 400 600 800

We need to first understand the different types of 1ssues that can cause our
model's performance to decay (model drift). The best way to do this is to look

at all the moving pieces of what we're trying to model and how each one can
experience drift

.| it

p(y|X) actual relationship between X and y Concept drift = P(y|X) # Prer(y]X)
X inputs (features) Data drift - P(X) # Pper(X)
y outputs (ground-truth) Target drift > P(y) # Pres(y)

23

Data drift

» Data drift, also known as feature drift or covariate shift, occurs when the
distribution of the production data 1s different from the training data

» The model can not deal with this drift in the feature space and it's predictions may not be
reliable. The actual cause of drift can be attributed to natural changes in the real-world but
also to systemic issues such as missing data, pipeline errors, schema changes, etc

» As data starts to drift, we may not yet notice significant decay in our model's performance,
especially 1f the model 1s able to interpolate well. However, this 1s a great opportunity
to potentially retrain before the drift starts to impact performance

60

50

40

30

20

1

o

2 4 6 8

10

mmm reference
production

i
12 14 1

6

18

140

120

100

80

60

40

20

mm reference
production

large medium small

Target drift

» Besides just the input data changing, as with data drift, we can also experience
drift in our outcomes

This can be a shift in the distributions but also the removal or addition of new classes with
categorical tasks. Though retraining can mitigate the performance decay caused target drift,
it can often be avoided with proper inter-pipeline communication about new classes,
schema changes, etc

Target Drift: detected, p_value=0.00829

W TR Ty

100 150 200

25

Concept drift

» Besides the input and output data drifting, we can have the actual relationship
between them drift as well
This concept drift renders our model ineffective because the patterns it learned to map

between the original inputs and outputs are no longer relevant. Concept drift can be
something that occurs in various patterns

Monitor the model performance to detect concept drift

You may try to use online learning to alleviate 1t

100

—— gradual
» W

—— periodic
90

85
80
75

70
26 0 10 20 30 40 50 60 70 80

Concept drift

» No model lasts forever! You’ve already learned about concept drift: over time,
the characteristics of your production data will change, gradually degrading the
performance and relevance of your model

27

The lifespan of your music recommender system will be counted in weeks. For the credit
card fraud detection systems, it will be days. A couple of years in the best case for the
image search engine. As soon as your model has launched, you should be getting ready to
train the next generation that will replace it

Watch out for changes in the production data. Are new features becoming available? Should you
expand or otherwise edit the label set?

Keep collecting and annotating data, and keep improving your annotation pipeline over time. In
particular, you should pay special attention to collecting samples that seem to be difficult for your
current model to classify - such samples are the most likely to help improve performance

Locating drift

» Now that we've 1dentified the different types of drift, we need to locate and
how often to measure it. Here are the constraints we need to consider:

Reference window: the set of points to compare production data distributions with to
identify drift

Target window: the set of points to compare with the reference window to determine 1f
drift has occurred
» Since we're dealing with online drift detection (ie. detecting drift in live
production data as opposed to past batch data), we can employ either a fixed or
sliding window approach to 1dentify our set of points for comparison

Typically, the reference window is a fixed, recent subset of the training data while the
target window slides over time

28

Measuring drift

» Once we have the window of points we wish to compare, we need to know
how to compare them

» Expectations - The first line of measurement can be rule-based such as validating
expectations around missing values, data types, value ranges, etc

» Univariate - Once we've validated our rule-based expectations, we need to quantitatively
measure drift. Traditionally, in order to compare two different sets of points to see if they
come from the same distribution, we use two-sample hypothesis testing on the distance
measured by a test

» Multivariate - Measuring drift 1s fairly straightforward for univariate data but difficult for
multivariate data

Measuring drift

» Univariate

» Kolmogorov-Smirnov (KS) test or Chi-squared test

» Multivariate

» Dimensionality reduction — PCA or Autoencdoer
» Two-sample tests
» Maximum Mean Discrepancy (MMD): a kernel-based multivariate two-sample tests

» Kolmogorov-Smirnov (KS) Test + Bonferroni Correction

» Other metrics

£l
X source \ ﬁ_> Two-Sample Test(s) Combined Test Statistic &

Shift Detecti
etection
Dimensionality >

-

Reduction — r|J A
—’.. ’. -
m_.// . g —

https://physics.stackexchange.com/questions/107682/kolmogorov-smirnov-test-vs-chi-squared-test
https://arxiv.org/abs/1810.11953
https://gantry.io/blog/youre-probably-monitoring-your-models-wrong/

Conclusion

» Model serving should consider
You need to determine how to save your model
Deploy the model using the REST API server, through local computer or onto device
Monitor the health and potential drifts of your system!

» This concludes the universal workflow of machine learning—that’s many
things to keep in mind. It takes time and experience to become an expert, but
don’t worry. You’re already a lot wiser than you were a few chapters ago. You
are now familiar with the big picture—the entire spectrum of what machine
learning projects entail. Always keep in mind the big picture!

31

References

[1] Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow,
Srd Edition Chapter 1 and 19

2] Deep learning with Python, 2nd Edition Chapter 9

3] https://madewithml.com/courses/mlops/monitoring/

4] https://fullstackdeeplearning.com/spring2021/lecture-11/#11-model-
monitoring

51 https://fullstackdeeplearning.com/course/2022/lecture-5-deployment/

(6] https://evidentlyai.com/blog/tutorial-1-model-analytics-in-production

https://www.oreilly.com/library/view/hands-on-machine-learning/9781098125967/
https://www.manning.com/books/deep-learning-with-python-second-edition
https://www.kaggle.com/learn/machine-learning-explainability
https://madewithml.com/courses/mlops/monitoring/
https://fullstackdeeplearning.com/spring2021/lecture-11/#ii-model-monitoring
https://fullstackdeeplearning.com/course/2022/lecture-5-deployment/
https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/xai_v4.pptx
https://evidentlyai.com/blog/tutorial-1-model-analytics-in-production

Appendix

33

Resources and libraries

» Lectures

» https://github.com/microsoft/ML-For-Beginners/blob/main/3-Web-App/1-Web-App/README.md

» https://github.com/microsoft/Data-Science-For-Beginners/blob/main/5-Data-Science-In-Cloud/17-
Introduction/README.md

» https://github.com/microsoft/Data-Science-For-Beginners/blob/main/6-Data-Science-In-Wild/20-
Real-World-Examples/README.md

» Pipelines

» https://madewithml.com/courses/mlops/pipelines/

» Continual learning

» https://madewithml.com/courses/mlops/continual-learning/

» https://fullstackdeeplearning.com/course/2022/lecture-6-continual-learning/

» On-line learning
» https://github.com/online-ml/river

https://github.com/microsoft/ML-For-Beginners/blob/main/3-Web-App/1-Web-App/README.md
https://github.com/microsoft/Data-Science-For-Beginners/blob/main/5-Data-Science-In-Cloud/17-Introduction/README.md
https://github.com/microsoft/Data-Science-For-Beginners/blob/main/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
https://madewithml.com/courses/mlops/pipelines/
https://madewithml.com/courses/mlops/continual-learning/
https://fullstackdeeplearning.com/course/2022/lecture-6-continual-learning/
https://github.com/online-ml/river

Resources and libraries

» Deployment
» Flask
» FastAPI

» Tensorflow serving

» https://pytorch.org/serve/

» TensorFlow.js

» TensorFlow Lite

» https://pytorch.org/mobile/home/

» Streamlit
» Gradio
4
>

https://github.com/voila-dashboards/voila
https://github.com/datapane/datapane

https://flask.palletsprojects.com/en/2.1.x/
https://fastapi.tiangolo.com/
https://github.com/tensorflow/serving
https://pytorch.org/serve/
http://www.tensorflow.org/js
http://www.tensorflow.org/lite
http://www.tensorflow.org/lite
https://streamlit.io/
https://gradio.app/
https://github.com/voila-dashboards/voila
https://github.com/datapane/datapane

Resources and libraries

» Container

» https://github.com/bentoml/BentoML
» https://github.com/replicate/cog

» https://github.com/basetenlabs/truss

» Optimization before deployment

» https://www.tensorflow.org/model optimization

» https://pytorch.org/blog/introduction-to-quantization-on-pytorch/

» https://huggingface.co/docs/optimum/index

https://github.com/bentoml/BentoML
https://github.com/replicate/cog
https://github.com/basetenlabs/truss
https://www.tensorflow.org/model_optimization
https://pytorch.org/blog/introduction-to-quantization-on-pytorch/
https://huggingface.co/docs/optimum/index

Resources and libraries

» Testing
» https://madewithml.com/courses/mlops/testing/

» Monitoring and testing
https://github.com/evidentlyail/evidently

https://github.com/whylabs/whylogs

https://github.com/SeldonlO/alibi-detect
https://greatexpectations.io/

4
4
» https://github.com/deepchecks/deepchecks
4
4

https://madewithml.com/courses/mlops/testing/
https://github.com/evidentlyai/evidently
https://github.com/deepchecks/deepchecks
https://github.com/deepchecks/deepchecks
https://github.com/SeldonIO/alibi-detect
https://greatexpectations.io/

Determine how to serve

» Online Learning

» In online learning, you train the system
incrementally by feeding it data sequentially, —
e <SSl

either individually or mini-batches. Each learn "
T ew data (on the fly)

learning step 1s fast and cheap, so the system
can learn about new data on the fly Launch!

» It can receive data as a continuous flow and

need to adapt to change rapidly L]
. .) ——— —pp| TranML Evaluate
» One important parameter of online learning gloori solution
systems 1s how fast they should adapt to -

changing data: this 1s called the learning rate

Determine how to serve

» Online Learning

» If bad data 1s fed to the system, the system’s
performance will gradually decline. For
example, bad data could come from a
malfunctioning sensor on a robot, or from
someone spamming a search engine to try to
rank high 1n search results. To reduce this risk,
you need to monitor your system closely and
promptly switch learning off

Model
features

» Similarly, you need to determine whether >
your system provide stream or batch
serving

predictions

>

Build a Prototype To Interact With

» Here are some best practices for prototype deployment:

1. Have a basic UI: The goal at this stage 1s to play around with the model and collect
feedback from other folks

2. Put it behind a web URL: An URL is easier to share. Furthermore, you will start
thinking about the tradeoffs you'll be making when dealing with more complex
deployment schemes

3. Do not stress it too much: You should not take more than a day to build a prototype

» A model prototype won't be your end solution to deploy

» Firstly, a prototype has limited frontend flexibility, so eventually, you want to be able to
build a fully custom UI for the model

» Secondly, a prototype does not scale to many concurrent requests. Once you start having
users, you'll hit the scaling limits quickly

Build a Prototype To Interact With

1. Your web server may be written in a different language

2. Models may change more frequently than server code
If you have a well-established application and a nascent model, you do not want to
redeploy the entire application every time that you make an update to the model

3. Large models can eat into the resources

— Request

for your web server. That might affect < Response
the user experience for people using that ctient Server Database
b ser oven ey arenot [(@ =
interacting with the model =

4. Your model and application may have
different scaling properties

41

Separate Your Model From Your Ul

» The first pattern to pull your model from your Ul 1s called batch prediction

42

You get new data in and run your model on each data point. Then, you save the results of
each model inference into a database

For example, if there are not a lot of potential inputs to the model, you can re-run your
model on some frequency. You can have reasonably fresh predictions to return to those
users that are stored 1in your database. Examples of these problems include the early stages
of building recommender systems and internal-facing tools like marketing automation

— Request

e Response

Client Server Database

Model

Separate Your Model From Your Ul

» Pros and Cons
v Batch prediction scales easily because databases have been engineered for such a purpose

v Even though it looks like a simple pattern, 1t has been used in production by large-scale
production systems for years

v It 1s fast to retrieve the prediction since the database 1s designed for the end application to
interact with

x Batch prediction doesn't scale to complex input types. If the universe of inputs is too large
to enumerate every single time you need to update your predictions, this won't work

x Users won't be getting the most up-to-date predictions from your model. If the feature that
goes into your model changes every hour, minute, but you only run your batch prediction
job every day, the predictions your users see might be slightly stale.

X Models frequently become "stale." If your batch jobs fail for some reason, it can be hard to
detect these problems

Model-as-Service

» We run the model online as its own service. The service 1s going to interact
with the backend or the client itself by making requests to the model service
and rece1ving responses back

— Request

s Response

Client Server Database

44

Model-as-Service

» The pros of this pattern are:
Dependability - model bugs are less likely to crash the web application
Scalability - you can choose optimal hardware for the model and scale it appropriately
Flexibility - you can easily reuse a model across multiple applications

Since this 1s a separate service, you add a network call when your server or client interacts
with the model. That can add latency to your application

It also adds infrastructural complexity because you are on the hook for hosting and
managing a separate SCTVICC
» The model-as-service pattern is still a sweet spot for most ML-powered
products since you really need to be able to scale independently of the
application in most use cases

45

Outlier

» With drift, we're comparing a window of production data with reference data as
opposed to looking at any one specific data point. While each individual point
may not be an anomaly or outlier, the group of points may cause a drift

46

It's not very easy to detect outliers because it's hard to constitute the criteria for an outlier.
Therefore the outlier detection task is typically unsupervised and requires a streaming
algorithm to 1dentify potential outliers

Typically, outlier detection algorithms fit to the training set to understand what normal data
looks like and then we can use a threshold to predict outliers

* nnnnn |
mm outlier

Data drift in Evidently

» For small data with <= 1000 observations in the reference dataset:
For numerical features (n_unique > 5): two-sample Kolmogorov-Smirnov test
For categorical features or numerical features with n unique <= 5: chi-squared test

For binary categorical features (n_unique <= 2), use the proportion difference test for
independent samples based on Z-score

» For larger data with > 1000 observations 1n the reference dataset:
For numerical features (n_unique > 5): Wasserstein Distance

For categorical features or numerical with n_unique <= 5): Jensen—Shannon divergence

47

